PEViD: Privacy Evaluation Video Dataset

نویسندگان

  • Pavel Korshunov
  • Touradj Ebrahimi
چکیده

Visual privacy protection, i.e., obfuscation of personal visual information in video surveillance is an important and increasingly popular research topic. However, while many datasets are available for testing performance of various video analytics, little to nothing exists for evaluation of visual privacy tools. Since surveillance and privacy protection have contradictory objectives, the design principles of corresponding evaluation datasets should differ too. In this paper, we outline principles that need to be considered when building a dataset for privacy evaluation. Following these principles, we present new, and the first to our knowledge, Privacy Evaluation Video Dataset (PEViD). With the dataset, we provide XML-based annotations of various privacy regions, including face, accessories, skin regions, hair, body silhouette, and other personal information, and their descriptions. Via preliminary subjective tests, we demonstrate the flexibility and suitability of the dataset for privacy evaluations. The evaluation results also show the importance of secondary privacy regions that contain non-facial personal information for privacy-intelligibility tradeoff. We believe that PEViD dataset is equally suitable for evaluations of privacy protection tools using objective metrics and subjective assessments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Serious Fun: Cartooning for Privacy Protection

This paper presents our solution to the 2013 MediaEval Visual Privacy Task [3]. We apply cartoon-like effects to captured video such that identities of persons are protected while behavioural information and hence system intelligibility are maintained. We present our processing pipeline which includes additional protection steps such as re-colouring or additional blurring and discuss early eval...

متن کامل

Overview of the MediaEval 2015 Drone Protect Task

This paper presents an overview of the Drone Protect Task (DPT) of MediaEval 2015, its objectives, related dataset, and evaluation approach. Participants in this task were required to implement a privacy filter or a combination of filters to protect various personal information regions in the video sequences provided. The challenge was to achieve an adequate balance between the degree of privac...

متن کامل

Overview of the MediaEval 2014 Visual Privacy Task

This paper presents an overview of the Visual Privacy Task (VPT) of MediaEval 2014, its objectives, related dataset, and evaluation approaches. Participants in this task were required to implement a privacy filter or a combination of filters to protect various personal information regions in video sequences as provided. The challenge was to achieve an adequate balance between the degree of priv...

متن کامل

Effective evaluation of privacy protection techniques in visible and thermal imagery

Privacy protection may be defined as replacing the original content in an image region with a (less intrusive) content having modified target appearance information to make it less recognizable by applying a privacy protection technique. Indeed, the development of privacy protection techniques also needs to be complemented with an established objective evaluation method to facilitate their asse...

متن کامل

Holistic Privacy Impact Assessment Framework for Video Privacy Filtering Technologies

In this paper, we present a novel Holistic Framework for Privacy Protection Level Performance Evaluation and Impact Assessment (H-PIA) to support the design and deployment of privacy-preserving filtering techniques as may be co-evolved for video surveillance through user-centred participative engagement and collectively negotiated solution seeking for privacy protection. The proposed framework ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013